III B. TECH I SEMESTER REGULAR EXAMINATIONS, DECEMBER - 2022 FORMAL LANGUAGES AND AUTOMATA THEORY
(Computer Science and Engineering)
Time: 3 Hours
Max. Marks: 70
Note: Answer ONE question from each unit ($\mathbf{5 \times 1 4 = 7 0}$ Marks)

UNIT-I

1. a) Construct a DFA to accept the following language:
$\mathrm{L}=\{\mathrm{w} \mid \mathrm{w}$ is of even length and begins with 01$\}$
also draw the Transition Table, Transition Diagram and check whether the string 0111101 is accepted by the Finite automata.
b) Differentiate between Moore and Mealy Machine
(OR)
2. a) Convert to DFA the following NFA and write procedure involved in conversion:

b) Explain the procedure for transforming a mealy machine into a [6M] moore machine?

UNIT-II

3. a) List and explain the operators of Regular expressions
b) Construct Finite Automaton for the following Regular [8M] Expression: 01* + 1
4. a) Write short note on different types of Grammars
b) Let $G=\left\{A_{0}, A_{1}, A_{2}, A_{3}\right\}$, $\left.\{a, b\}, P, A_{0}\right\}$ where P consists of
$\mathrm{A}_{0} \rightarrow \mathrm{aA}_{0} \mid \mathrm{bA}_{1}$,
$\mathrm{A}_{1} \rightarrow \mathrm{aA}_{2} \mid \mathrm{aA}_{3}$,
$\mathrm{A}_{2} \rightarrow \mathrm{a}\left|\mathrm{bA}_{1}\right| \mathrm{bA}_{3}$,
$\mathrm{A}_{3} \rightarrow \mathrm{~b} \mid \mathrm{bA} 0$
Construct NFA accepting L(G)
c) Construct Left linear grammar for the given Right linear [2M] Grammar
$\mathrm{A} \rightarrow 0 \mid 0 \mathrm{~B}$
$B \rightarrow 1 \mathrm{C}$
$\mathrm{C} \rightarrow 0 \mid 0 \mathrm{~B}$

UNIT-III

5. a) Let $G=\{\{S, A\},\{a, b\}, P, S\}$ where
$\mathrm{P}: \mathrm{S} \rightarrow$ aAS | a,
$\mathrm{A} \rightarrow \mathrm{SbA}|\mathrm{SS}| \mathrm{ba}$
Construct a string $\mathrm{w}=$ aabbaa, using Leftmost and Rightmost Derivation.
b) Consider the Grammar G
$\mathrm{S} \rightarrow \mathrm{ABC}$
$\mathrm{A} \rightarrow \mathrm{BC} \mid \mathrm{a}$
$\left.\mathrm{B} \rightarrow \mathrm{bAC}\right|^{\varepsilon}$
$\left.\mathrm{C} \rightarrow \mathrm{CAB}\right|^{\varepsilon}$
Write procedure for Eliminating ${ }^{\varepsilon}$-Productions and Construct G1 which contains no ${ }^{\varepsilon}$-productions. (Note: Symbol ${ }^{\varepsilon}$ means epsilon)
6. a) Write the steps involved in Pumping Lemma for CFL
b) Check whether the given language is CFL or not:
$L=\left\{a^{i b}{ }^{i} c^{i} \mid i>=1\right\}$

UNIT-IV

7. a) Define PDA. Construct PDA for $L=\left\{W_{c W}{ }^{R} \mid W\right.$ is in $\left.(0+1)^{*}\right\}$
b) Construct DPDA for the language $L=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 2^{\mathrm{n}} \mid \mathrm{n}>=1\right\}$
[note: equal number of 0 's followed by equal number of 1 's followed by equal number of 2's]
(OR)
8. a) Write the rules to construct PDA.
b) Write Procedure to generate PDA from Grammar. Convert the following grammar into PDA
$\mathrm{I} \rightarrow \mathrm{a}|\mathrm{b}| \mathrm{Ia}|\mathrm{Ib}| \mathrm{IO} \mid \mathrm{I} 1$
$\mathrm{E} \rightarrow \mathrm{I}|\mathrm{E} * \mathrm{E}| \mathrm{E}+\mathrm{E} \|(\mathrm{E})$
UNIT-V
9. a) Write notation for Turing Machine.
b) Design Turing Machine for 2's complement.
(OR)
10. a) Draw and explain the relationship between Recursive, RE [7M] languages and also write differences between them.
b) Define Post's correspondence problem with suitable example [7M] explain it.
