III B. TECH I SEMESTER REGULAR EXAMINATIONS, DECEMBER - 2022 FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 Hours

Max. Marks: 70

R20

[6M]

Note: Answer ONE question from each unit $(5 \times 14 = 70 \text{ Marks})$

UNIT-I

- a) Construct a DFA to accept the following language: [8M]
 L = {w | w is of even length and begins with 01}
 also draw the Transition Table, Transition Diagram and check whether the string 0111101 is accepted by the Finite automata.
 - b) Differentiate between Moore and Mealy Machine

(OR)

2. a) Convert to DFA the following NFA and write procedure involved [8M] in conversion:

b) Explain the procedure for transforming a mealy machine into a [6M] moore machine?

UNIT-II

- 3. a) List and explain the operators of Regular expressions [6M]
 - b) Construct Finite Automaton for the following Regular [8M] Expression: 01* + 1

(OR)

- 4. a) Write short note on different types of Grammars [6M]
 - b) Let $G = \{A_0, A_1, A_2, A_3\}$, $\{a, b\}$, P, A₀ $\}$ where P consists of [6M] $A_0 \rightarrow aA_0 \mid bA_1$, $A_1 \rightarrow aA_2 \mid aA_3$, $A_2 \rightarrow a \mid bA_1 \mid bA_3$, $A_3 \rightarrow b \mid bA_0$ Construct NFA accepting L(G)
 - c) Construct Left linear grammar for the given Right linear [2M] Grammar
 - $A \rightarrow 0 \mid 0B$
 - $B \rightarrow 1C$
 - $C \rightarrow 0 \mid 0B$

UNIT-III

- 5. a) Let G = {{S, A}, {a, b}, P, S} where [6M]
 P: S → aAS | a,
 A → SbA | SS | ba
 Construct a string w = aabbaa, using Leftmost and Rightmost Derivation.
 - b) Consider the Grammar G $S \rightarrow ABC$ $A \rightarrow BC \mid a$ $B \rightarrow bAC \mid ^{\varepsilon}$

 $C \rightarrow CAB | \epsilon$

Write procedure for Eliminating ϵ -Productions and Construct

G1 which contains no $^\epsilon\text{-productions.}$ (Note: Symbol $^\epsilon$ means epsilon)

(OR)

- 6. a) Write the steps involved in Pumping Lemma for CFL [7M]
 - b) Check whether the given language is CFL or not: [7M] $L = \{a^i b^i c^i \mid i \ge 1\}$

UNIT-IV

a) Define PDA. Construct PDA for $L = \{W \in W^R \mid W \text{ is in } (0+1)^*\}$ 7. [7M] b) Construct DPDA for the language $L = \{0^n 1^n 2^n | n \ge 1\}$ [7M] note: equal number of 0's followed by equal number of 1's followed by equal number of 2's] (OR) 8. a) Write the rules to construct PDA. [6M] Write Procedure to generate PDA from Grammar. Convert the [8M] b) following grammar into PDA $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$ $E \rightarrow I \mid E * E \mid E + E \mid (E)$

UNIT-V

- 9. a) Write notation for Turing Machine. [6M]
 - b) Design Turing Machine for 2's complement. [8M]

(OR)

- 10. a) Draw and explain the relationship between Recursive, RE [7M] languages and also write differences between them.
 - b) Define Post's correspondence problem with suitable example [7M] explain it.

* * * * *

[8M]